x0为启动按钮,x1为停止按钮。y0~y7为8盏灯。程序在按下启动按钮后,灯1先亮,1秒(T0延时)后灭,1秒后(T1延时)灯2亮,依次循环。当按下x1后,循环结束。
按下x0后,m0得电为1并自保持,此时1秒计时器T0计时,1秒后T0常开点闭合1秒计时器T1计时,再过1秒T1计时结束常闭点断开T0线圈,
T0失电复位并断开T0常开点,此时T1线圈也失电复位,T1常闭点又闭合,T0得电重复上述计时过程。
第二个程序块:
当M0为1时,在T0触点的上升沿来时k3M10这个二进制数乘以2再写入k3M10中。
K3M10代表M10~M21共12个辅助继电器的组合,那么可以将K3M10看作是一个二进制数。程序未启动时,M10~M21均为0,那么这个二进制数为0;当程序启动时,在下一个程序块中利用了M0的上升沿置位M10,此时M10~M21为1,当T0触点的上升沿来时k3M10(此时为1)这个二进制数乘以2再写入k3M10中(写入后为2),2在二进制数中为10,此时M10失电,M11得电,可以认为M10把"1"交给了M11,以此类推。当第8个M17得电时,完成了一次循环。下一个T0上升沿来到时,M18得电,M17失电。此时下面的程序块利用了M18的上升沿重新置位M10并且将M18复位。这样程序又从M10得电开始循环下去了。
这个程序块的作用就是每次T0的上升沿来到时,“1”在M10~M17之间转移。
用74HC161设计一个四进制计数器,使用同步置数功能。当计数到最大数3时,用一个与非门74LS00,产生一个置数信号加到置数端LD即可。下图是逻辑图,也是仿真图,是计数到最大数3时的截图。你画逻辑图时,要省掉 那个数码管,那是为了显示仿真效果的。
其实就是计数器原理,所谓的定时器就是用计数器来实现的一个功能而已。
计数器的原理,很简单,就是给个方波信号,一个方波,就加1即可,最简单的都能用数字电子技术里的或门,与门,非门来实现的。专门做计数的芯片也是一大堆,这里我们就不讨论怎么用或门,非门,与门,做出一个计数器了吧。
那么怎么用计数器实现定时器的功能呢?其实很简单,只要你给计数器的方波是规律的就可以了啊,比如做一个一秒钟输出一个方波的电路,然后把这个方波给计数器,即可,那么这个计数器就是一个定时器了,假设计数器一开始是0,一个方波以后,计数器就变成了1,对吧,但是计数器的方波来源是稳定的,一秒钟就给一个方波,那么这个就是个1s的定时器了吧,我们可以通过计数器的数值,来确定时间了吧,这样就可以完成定时的功能了吧。
单片机也是通过这种手段来形成的,你可能就要问了,那我单片机不是没有方波发射的装置吗?对不起,单片机芯片内部自己内置了,所以你不需要自己做这个方波发生装置,那么单片机是用什么来形成方波的呢?答案是你外置的晶振,单片机是通过你外部的那个晶振来实现的,而且晶振也是你单片机能跑起来的关键,他是单片机的CPU等内部部件工作的时间标准,比如晶振12MHZ,就是这个晶振1秒钟,能有12M个方波形成懂吧,所以这个频率是很高的了,但是单片机一般不在这么高的频率上工作,所以CPU的时间单位,不是晶振的频率,一般是要进行降频处理的,也叫分频,像51单片机,很多都是12分频的,即外部晶振是12MHZ,内部CPU工作的频率只有1MHZ,内部的计数器一般也不能在那么高的频率下工作,所以也是分频的,你最需要了解的是计数器或定时器里的数值加1,对应的时间是多少,一般都是1ms这样的整数倍。
然后计数器呢?计数器就是用晶振分频后的方波来工作的,晶振工作稳定,频率稳定,那么定时器就稳定,而如果你不用定时器的时候呢?那么计数器的计数端,就和来自晶振的方波,切断,切换成对应的IO端口的线路即可,而外部的端口,他们的波形和频率都不确定,所以就不是定时器了,如果你在外部,加个稳定的方波装置,计数器也就是定时器了,只不过这个需要自己去实现,岂不是麻烦?所以一般都用单片机内部自带的,方便而已。
51单片机是基础入门的一个单片机,还是应用最广泛的。
51单片机的定时/计数器的概念
单片机中,脉冲计数与时间之间的关系十分密切,每输入一个脉冲,计数器的值就会自动累加1,只要相邻两个计数脉冲之间的时间间隔相等,则计数值就代表了时间的流逝,因此,单片机中的定时器和计数器其实是同一个物理的电子元件,只不过计数器记录的是单片机外部发生的事情(接受的是外部脉冲),而定时器则是由单片机自身提供的一个非常稳定的计数器,这个稳定的计数器就是单片机上连接的晶振部件;MCS-51单片机的晶振经过12分频之后提供给单片机稳定脉冲;晶振的频率是非常准确的,所以单片机的计数脉冲之间的时间间隔也是非常准确的。
51单片机的定时/计数器的工作原理
加1计数器输入的计数脉冲有两个来源,一个是由系统的时钟振荡器输出脉冲经12分频后送来;一个是T0或T1引脚输入的外部脉冲源。
作为定时器使用时,定时器计数8051单片机片内振荡器输出经过12分频后的脉冲个数,即:每个机器周期使定时器T0/T1的寄存器值自动累加1,直到溢出,溢出后继续从0开始循环计数;所以,定时器的分辨率是时钟振荡频率的1/12;
作为计数器使用时,通过引脚T0(P3.4)或T1(P3.5)对外部脉冲信号进行计数,当输入的外部脉冲信号发生从1到0的负跳变时,计数器的值就自动加1由于检测一个从1到0的下降沿需要2个机器周期,因此要求被采样的电平至少要维持一个机器周期。当晶振频率为12MHz时,最高计数频率不超过1/2MHz,即计数脉冲的周期要大于2微秒。;计数器的最高频率一般是时钟振荡频率的1/24;
由此可知,不论是定时器还是计数器工作方式,定时器T0和T1均不占用CPU的时间,除非定时器/计数器T0和T1溢出,才可能引起CPU中断,转而去执行中断处理程序。所以说,定时器/计数器是单片机中效率高而工作灵活的部件。
首先将定时器设置为计数器模式。
其次,将外部脉冲接入到相应定时器的输入端。
这样就可以使用计数器了。
有定时器和计数器模式的区别,所谓定时器,就是对机器内部频率计数,可以做时钟,如果为计数器模式,就是对P3.4,P3.5所接受到得脉冲计数,可以设置低电平或者下降沿触发……
如何用单片机计数器实现计数的介绍到此就结束了,感谢您耐心阅读,谢谢。
本文标签:如何用单片机计数器实现计数