第一章 确定系统功能与性能
本系统的功能主要有数据采集、数据处理、输出控制。能对0~1000 �0�2c范围内的各种电加热炉的温度进行精密测量,同时,四位LED显示器直接跟踪显示被控对象的温度值,准确度高,显示清晰,稳定可靠,使用方便(在具体设计编程、调试过程中,为了调试方便,编程把温度范围设在0~100 �0�2c)。
本系统的原理框图如下图所示。
数据采集部分能完成对被测信号的采样,显示分辨率0.1�0�2c,测量精度0.1�0�2c,控制精度0.1�0�2c,可以实现采集信号的放大及A/D转换,并自动进行零漂校正,同时按设定值、所测温度值、温度变化速率,自动进行FID参数自整定和运算,并输出0~10mA控制电流,配以主回路实现温度的控制。数据处理分为预处理、功能性处理、抗干扰等子功能。输出控制部分主要是数码管显示控制。
第二章 确定系统基本结构及硬件设计
本单片机应用系统结构是以单片机为核心外部扩展相关电路的形式。确定了系统中的单片机、存储器分配及输入/输出方式就可大体确定出单片机应用系统的基本组成。
1)单片机选用MCS-51系统的8031
8031是INTEL公司MCS-51系列单片机中最基本的产品,它采用INTEL公司可靠的CHMOS工艺技术制造的高性能8位单片机,属于标准的MCS-51的HCMOS产品。它结合了HMOS的高速和高密度技术及CHMOS的低功耗特征,标准MCS-51单片机的体系结构和指令系统。
8031内置中央处理单元、128字节内部数据存储器RAM、32个双向输入/输出(I/O)口、2个16位定时/计数器和5个两级中断结构,一个全双工串行通信口,片内时钟振荡电路。但80C31片内并无程序存储器,需外接ROM。
此外,8031还可工作于低功耗模式,可通过两种软件选择空闲和掉电模式。在空闲模式下冻结CPU而RAM定时器、串行口和中断系统维持其功能。掉电模式下,保存RAM数据,时钟振荡停止,同时停止芯片内其它功能。8031有PDIP(40pin)和PLCC(44pin)两种封装形式。
主要功能特性:
· 标准MCS-51内核和指令系统
· 外部程序存储器ROM地址空间64kB
· 32个可编程双向I/O口
· 128x8bit内部RAM(可扩充64kB外部存储器)
· 2个16位可编程定时/计数器
· 时钟频率3.5-16MHz
· 5个中断源
· 5.0V工作电压
· 全双工串行通信口
· 布尔处理器
· 2层优先级中断结构
· 兼容TTL和CMOS逻辑电平
· PDIP(40)和PLCC(44)封装形式
#includereg52.h //包含头文件,一般情况不需要改动,头文件包含特殊功能寄存器的定义
#includestdio.h
#include "18b20.h"
#include "1602.h"
#include "delay.h"
bit ReadTempFlag;//定义读时间标志
void Init_Timer0(void);//定时器初始化
/*------------------------------------------------
串口通讯初始化
------------------------------------------------*/
void UART_Init(void)
{
SCON = 0x50; // SCON: 模式 1, 8-bit UART, 使能接收
TMOD |= 0x20; // TMOD: timer 1, mode 2, 8-bit 重装
TH1 = 0xFD; // TH1: 重装值 9600 波特率 晶振 11.0592MHz
TR1 = 1; // TR1: timer 1 打开
//EA = 1; //打开总中断
//ES = 1; //打开串口中断
TI=1;
}
/*------------------------------------------------
主函数
------------------------------------------------*/
void main (void)
{
int temp;
float temperature;
char displaytemp[16];//定义显示区域临时存储数组
LCD_Init(); //初始化液晶
DelayMs(20); //延时有助于稳定
LCD_Clear(); //清屏
Init_Timer0();
UART_Init();
Lcd_User_Chr(); //写入自定义字符
LCD_Write_String(0,0," ");
LCD_Write_Char(13,1,0x01);//写入温度右上角点
LCD_Write_Char(14,1,'C'); //写入字符C
while (1) //主循环
{
if(ReadTempFlag==1)
{
ReadTempFlag=0;
temp=ReadTemperature();
temperature=(float)temp*0.0625;
sprintf(displaytemp,"Temp % 7.3f",temperature);//打印温度值
LCD_Write_String(0,1,displaytemp);//显示第二行
}
}
}
/*------------------------------------------------
定时器初始化子程序
------------------------------------------------*/
void Init_Timer0(void)
{
TMOD |= 0x01; //使用模式1,16位定时器,使用"|"符号可以在使用多个定时器时不受影响
//TH0=0x00; //给定初值
//TL0=0x00;
EA=1; //总中断打开
ET0=1; //定时器中断打开
TR0=1; //定时器开关打开
}
/*------------------------------------------------
定时器中断子程序
------------------------------------------------*/
void Timer0_isr(void) interrupt 1
{
static unsigned int num;
TH0=(65536-2000)/256; //重新赋值 2ms
TL0=(65536-2000)%256;
num++;
if(num==300) //
{
num=0;
ReadTempFlag=1; //读标志位置1
}
}
/*-----------------------------------------------
名称:LCD1602
论坛:
编写:shifang
日期:2009.5
修改:无
内容:
引脚定义如下:1-VSS 2-VDD 3-V0 4-RS 5-R/W 6-E 7-14 DB0-DB7 15-BLA 16-BLK
------------------------------------------------*/
#include "1602.h"
#include "delay.h"
sbit RS = P2^4; //定义端口
sbit RW = P2^5;
sbit EN = P2^6;
#define RS_CLR RS=0
#define RS_SET RS=1
#define RW_CLR RW=0
#define RW_SET RW=1
#define EN_CLR EN=0
#define EN_SET EN=1
#define DataPort P0
/*------------------------------------------------
判忙函数
------------------------------------------------*/
bit LCD_Check_Busy(void)
{
DataPort= 0xFF;
RS_CLR;
RW_SET;
EN_CLR;
_nop_();
EN_SET;
return (bit)(DataPort 0x80);
}
/*------------------------------------------------
写入命令函数
------------------------------------------------*/
void LCD_Write_Com(unsigned char com)
{
// while(LCD_Check_Busy()); //忙则等待
DelayMs(5);
RS_CLR;
RW_CLR;
EN_SET;
DataPort= com;
_nop_();
EN_CLR;
}
/*------------------------------------------------
写入数据函数
------------------------------------------------*/
void LCD_Write_Data(unsigned char Data)
{
//while(LCD_Check_Busy()); //忙则等待
DelayMs(5);
RS_SET;
RW_CLR;
EN_SET;
DataPort= Data;
_nop_();
EN_CLR;
}
/*------------------------------------------------
清屏函数
------------------------------------------------*/
void LCD_Clear(void)
{
LCD_Write_Com(0x01);
DelayMs(5);
}
/*------------------------------------------------
写入字符串函数
------------------------------------------------*/
void LCD_Write_String(unsigned char x,unsigned char y,unsigned char *s)
{
if (y == 0)
{
LCD_Write_Com(0x80 + x); //表示第一行
}
else
{
LCD_Write_Com(0xC0 + x); //表示第二行
}
while (*s)
{
LCD_Write_Data( *s);
s ++;
}
}
/*------------------------------------------------
写入字符函数
------------------------------------------------*/
void LCD_Write_Char(unsigned char x,unsigned char y,unsigned char Data)
{
if (y == 0)
{
LCD_Write_Com(0x80 + x);
}
else
{
LCD_Write_Com(0xC0 + x);
}
LCD_Write_Data( Data);
}
/*------------------------------------------------
初始化函数
------------------------------------------------*/
void LCD_Init(void)
{
LCD_Write_Com(0x38); /*显示模式设置*/
DelayMs(5);
LCD_Write_Com(0x38);
DelayMs(5);
LCD_Write_Com(0x38);
DelayMs(5);
LCD_Write_Com(0x38);
LCD_Write_Com(0x08); /*显示关闭*/
LCD_Write_Com(0x01); /*显示清屏*/
LCD_Write_Com(0x06); /*显示光标移动设置*/
DelayMs(5);
LCD_Write_Com(0x0C); /*显示开及光标设置*/
}
/*------------------------------------------------
设定二个自定义字符,LCD1602中自定义字符的地址为0x00--0x07,
即可定义8个字符
这里我们设定把一个自定义字符放在0x00位置(000),
另一个放在0x01位子(001)
------------------------------------------------*/
void Lcd_User_Chr(void)
{ //第一个自定义字符
LCD_Write_Com(0x40); //"01 000 000" 第1行地址 (D7D6为地址设定命令形式D5D4D3为字符存放位置(0--7),D2D1D0为字符行地址(0--7))
LCD_Write_Data(0x00); //"XXX 11111" 第1行数据(D7D6D5为XXX,表示为任意数(一般用000),D4D3D2D1D0为字符行数据(1-点亮,0-熄灭)
LCD_Write_Com(0x41); //"01 000 001" 第2行地址
LCD_Write_Data(0x04); //"XXX 10001" 第2行数据
LCD_Write_Com(0x42); //"01 000 010" 第3行地址
LCD_Write_Data(0x0e); //"XXX 10101" 第3行数据
LCD_Write_Com(0x43); //"01 000 011" 第4行地址
LCD_Write_Data(0x0e); //"XXX 10001" 第4行数据
LCD_Write_Com(0x44); //"01 000 100" 第5行地址
LCD_Write_Data(0x0e); //"XXX 11111" 第5行数据
LCD_Write_Com(0x45); //"01 000 101" 第6行地址
LCD_Write_Data(0x1f); //"XXX 01010" 第6行数据
LCD_Write_Com(0x46); //"01 000 110" 第7行地址
LCD_Write_Data(0x04); //"XXX 11111" 第7行数据
LCD_Write_Com(0x47); //"01 000 111" 第8行地址
LCD_Write_Data(0x00); //"XXX 00000" 第8行数据
//第二个自定义字符
LCD_Write_Com(0x48); //"01 001 000" 第1行地址
LCD_Write_Data(0x03); //"XXX 00001" 第1行数据
LCD_Write_Com(0x49); //"01 001 001" 第2行地址
LCD_Write_Data(0x03); //"XXX 11011" 第2行数据
LCD_Write_Com(0x4a); //"01 001 010" 第3行地址
LCD_Write_Data(0x00); //"XXX 11101" 第3行数据
LCD_Write_Com(0x4b); //"01 001 011" 第4行地址
LCD_Write_Data(0x00); //"XXX 11001" 第4行数据
LCD_Write_Com(0x4c); //"01 001 100" 第5行地址
LCD_Write_Data(0x00); //"XXX 11101" 第5行数据
LCD_Write_Com(0x4d); //"01 001 101" 第6行地址
LCD_Write_Data(0x00); //"XXX 11011" 第6行数据
LCD_Write_Com(0x4e); //"01 001 110" 第7行地址
LCD_Write_Data(0x00); //"XXX 00001" 第7行数据
LCD_Write_Com(0x4f); //"01 001 111" 第8行地址
LCD_Write_Data(0x00); //"XXX 00000" 第8行数据
}
#include"delay.h"
#include"18b20.h"
/*------------------------------------------------
18b20初始化
------------------------------------------------*/
bit Init_DS18B20(void)
{
bit dat=0;
DQ = 1; //DQ复位
DelayUs2x(5); //稍做延时
DQ = 0; //单片机将DQ拉低
DelayUs2x(200); //精确延时 大于 480us 小于960us
DelayUs2x(200);
DQ = 1; //拉高总线
DelayUs2x(50); //15~60us 后 接收60-240us的存在脉冲
dat=DQ; //如果x=0则初始化成功, x=1则初始化失败
DelayUs2x(25); //稍作延时返回
return dat;
}
/*------------------------------------------------
读取一个字节
------------------------------------------------*/
unsigned char ReadOneChar(void)
{
unsigned char i=0;
unsigned char dat = 0;
for (i=8;i0;i--)
{
DQ = 0; // 给脉冲信号
dat=1;
DQ = 1; // 给脉冲信号
if(DQ)
dat|=0x80;
DelayUs2x(25);
}
return(dat);
}
/*------------------------------------------------
写入一个字节
------------------------------------------------*/
void WriteOneChar(unsigned char dat)
{
unsigned char i=0;
for (i=8; i0; i--)
{
DQ = 0;
DQ = dat0x01;
DelayUs2x(25);
DQ = 1;
dat=1;
}
DelayUs2x(25);
}
/*------------------------------------------------
读取温度
------------------------------------------------*/
unsigned int ReadTemperature(void)
{
unsigned char a=0;
unsigned int b=0;
unsigned int t=0;
Init_DS18B20();
WriteOneChar(0xCC); // 跳过读序号列号的操作
WriteOneChar(0x44); // 启动温度转换
DelayMs(10);
Init_DS18B20();
WriteOneChar(0xCC); //跳过读序号列号的操作
WriteOneChar(0xBE); //读取温度寄存器等(共可读9个寄存器) 前两个就是温度
a=ReadOneChar(); //低位
b=ReadOneChar(); //高位
b=8;
t=a+b;
return(t);
}
明显是程序的问题
先把程序分成几个部分,让每个部分单独工作,看看有没有问题,如果都没有问题,再一个一个组合到一起,每加一个部分就测试一下,基本可以找到问题
其实很简单。
1、计算单片机延时程序的最小延时长度;
2、详细的阅读18B20的DS,按照里面的时序要求安排单片机延时(这点最重要)。
3、调试时不要连续读18B20,最好搞个按键,按一次读一次,这样利于找到问题;
4、一点一点的增减延时,尤其是在发送和接收接受之间的延时(我认为你就是这里延时不够,而且连续读,所以读到的是mach指令,然后是返回的85°信号);
5、有条件的话,使用逻辑分析仪观察数据收发情况,问题可以一目了然。
——经验是累计的,关键是熟读DS。
这是当年我调不出来是,21IC论坛上兄弟给我的建议。我照做了,结果就调出来了。
假设用DS18B20做温度采集,要知道传感器有个采集时间,并不是说总线的速度怎样,而是传感器内部需要时间,如果给个范围,大约是0.1秒以上,一般说明书会写明。
既然是单片机,那么高速就谈不上了。不过高速可以有另一种解释,在多路温度采集时候,速度特别快,而不再单个,单个速度不变,只不过,在有限时间能处理多少路温度采集。
我们又知道,数码管显示,如果不基于硬件,或者不是静态显示,则消耗单片机的运算时间,那么就更谈不上什么高速了。
既然传感器响应时间谈不上高速,那么只有在多路采集上,才能说明你的硬件设计的效果,况且温度采集,我感觉不是那么需要高速。
你要说做个热成像,根据热辐射显示出图像,并且预算出每像素点的温度,这个才称之为高速。
给你点建议,想高速了,还是用FPGA去实现,嵌入nios核加上你自己编写的硬件ip,再加个115200波特率的ip核,外设弄多路ad,你弄个多路温度也行 电压也行,比方1秒钟采集5000次电压信号。这个我感觉叫高速,作为学生,基本大家没什么意见。
单片机采集温度输出数码管的介绍到此就结束了,感谢您耐心阅读,谢谢。
本文标签:单片机采集温度输出数码管